УГЛЕВОДЫ

IУглево́ды (синонимы: глициды, глюциды, сахариды, сахара)
обширный, наиболее распространенный на Земле класс органических соединений, входящих в состав клеток всех организмов и абсолютно необходимых для их жизнедеятельности. Углеводы являются первичными продуктами фотосинтеза. Во всех живых клетках У. и их производные играют роль пластического и структурного материала, поставщика энергии, субстратов и регуляторов жизненно важных биохимических процессов. Качественное или количественное изменение содержания различных У. в крови, моче и других биологических жидкостях человека является информативным диагностическим признаком нарушений углеводного обмена, носящих наследственный характер или развившихся вторично вследствие различных патологических состояний. В питании человека У. являются одной из основных групп пищевых веществ наряду с белками и жирами (см. Питание). Термин «углеводы» (углерод + вода) был предложен в 1844 г. Шмидтом (С. Schmidt), т.к. формулы известных в то время представителей этого класса веществ соответствовали общей формуле Cn (Н2О) m, однако позже оказалось, что подобную формулу могут иметь не только У., но и, например, молочная кислота. Кроме того, к У. стали относить различные, сходные по свойствам их производные с иной общей формулой.
Класс У. включает самые разнообразные соединения от низкомолекулярных веществ до высокомолекулярных полимеров. Условно У. делят на три большие группы: моносахариды, олигосахариды и полисахариды. Отдельно рассматривают группу смешанных биополимеров, молекулы которых содержат наряду с олигосахаридной или полисахаридной цепью белковые, липидные и другие компоненты (см. Гликоконъюгаты). К моносахаридам (монозам, или простым сахарам) относят полиоксиальдегиды (альдозы, или альдосахара) и полиоксикетоны (кетозы, или кетосахара). По числу углеродных атомов моносахариды делят на триозы, тетрозы, пентозы, гексозы, гептозы, октозы, нонозы. Наиболее распространены в природе и важны для человека гексозы и пентозы. По взаимному пространственному расположению водорода и гидроксильной группы у последнего асимметричного углеродного атома в молекуле все моносахариды относят к D- или L-ряду (вращают плоскость поляризованного луча света соответственно вправо или влево). Моносахариды, распространенные в природе как в свободном виде, так и входящие в состав многочисленных соединений, относятся главным образом к D-ряду; моносахариды в твердом состоянии находятся в виде циклических полуацеталей — пятичленных (фураноз) или шестичленных (пираноз). Моносахариды существуют в виде α- и β-изомеров, различающихся по конфигурации асимметричного центра у карбонильного углерода. В растворе между этими формами устанавливается подвижное равновесие, кроме того, в нем присутствует наиболее реакционно-способная ациклическая форма моносахарида. Циклы моносахаридов могут приобретать различные геометрические формы, называемые конформациями. К моносахаридам относятся также дезоксисахара (гидроксильная группа замещена водородом), аминосахара (содержат аминогруппу), уроновые, альдоновые и сахарные кислоты (содержат карбоксильные группы), многоатомные спирты, эфиры моносахаридов, гликозиды, сиаловые кислоты и др.
К олигосахаридам относят соединения, молекулы которых построены из остатков циклических форм моносахаридов, соединенных О-гликозидными связями. Число остатков моносахаридов в молекулах олигосахаридов не превышает 10. Олигосахариды делятся на ди-, три-, тетрасахариды и т.д. по числу входящих в них остатков моносахаридов. Если молекула олигосахарида построена из остатков одного и того же моносахарида, то его называют гомоолигосахаридом; если же такая молекула построена из остатков разных моносахаридов — гетероолигосахаридом. Олигосахариды бывают линейными, разветвленными, циклическими, редуцирующими (обладающими способностью к химической реакции восстановления) и нередуцирующими; они различаются также по типу связи между остатками моносахаридов. Ранее олигосахариды и моносахариды иногда объединяли под общим названием «сахара». В гликозидах моносахаридная или олигосахаридная часть молекулы соединяется с низкомолекулярным неуглеводным компонентом через серу (S-гликозиды), кислород (О-гликозиды) или азот (N-гликозиды).
Полисахариды (полиозы, гликаны) — высокомолекулярные соединения, содержат в составе своей молекулы десятки и даже тысячи циклических моносахаридных звеньев, соединенных гликозидными связями, некоторые полисахариды содержат также остатки серной, фосфорной и жирных кислот. Полисахариды делят на гомо- и гетерополисахариды, линейные и разветвленные. Кроме того, они различаются и типом связи между моносахаридными остатками. Олигосахариды и полисахариды, построенные только из моносахаридов, часто называют просто сахаридами.
Многие моносахариды легко растворимы в воде и полярных растворителях, легко кристаллизуются, имеют сладкий вкус, оптически активны и обладают восстанавливающей способностью. Ациклические моносахариды при восстановлении образуют полиспирты (полиолы), при окислении — кислоты (уроновые, альдоновые и сахарные). При воздействии на моносахариды кислот или щелочей происходит взаимопревращение альдосахаров в кетосахара и обратно (эпимеризация). В более жестких условиях из моносахаридов под действием кислот образуются фурфуролы, а при сильном защелачивании моносахариды деградируют с разрывом углерод-углеродных связей. Большинство полисахаридов — аморфные вещества, труднорастворимые или не растворимые в воде и органических растворителях (при растворении в воде образуют коллоиды, не растворимые в воде набухают). Полисахариды не кристаллизуются, практически не обладают восстанавливающей способностью. Олигосахариды по своим свойствам занимают промежуточное положение между моносахаридами и полисахаридами. Они растворимы в воде, способны к кристаллизации, многие обладают сладким вкусом. Под действием кислот олигосахариды и полисахариды гидролизуются до моносахаридов.
Самыми важными для организма человека моносахаридами являются: из пентоз — рибоза, дезоксирибоза и ксилоза, из гексоз — наряду с глюкозой альдогексозы галактоза (цереброза) и манноза, кетогексоза фруктоза (или фруктовый сахар), дезоксигексоза фукоза, гексозамины (глюкозамин и галактозамин), из сиаловых кислот — нейраминовая кислота. Все эти моносахариды, за исключением фруктозы, являются компонентами различных смешанных биополимеров. Дисахариды: сахароза (тростниковый сахар, глюкофруктозил) и лактоза (молочный сахар, глюкогалактозид) являются важными компонентами пищи человека. Большое значение для человека имеют гомополисахариды, построенные из остатков глюкозы, такие, как резервный полисахарид гликоген, один из основных пищевых У. — крахмал, структурный растительный полисахарид — целлюлоза, или клетчатка. Крахмал, сахароза, лактоза, декстрины и другие У. превращаются в организме в глюкозу (см. Углеводный обмен), которая затем, окисляясь анаэробным путем (см. Гликолиз) и аэробным путем (см. Дыхание), снабжает энергией все живые клетки организма. Однако роль У. не сводится только к покрытию энергетических потребностей. Промежуточные продукты обмена У. используются для синтеза других необходимых классов веществ, в частности липидов, нуклеиновых кислот. Чрезвычайно важна резервная функция У. (полисахариды гликоген и крахмал), опорная функция (полисахариды целлюлоза и хитин, гликопротеиды, гликолипопротеиды и др.) и высокоспециализированные функции углеводсодержащих смешанных биополимеров и полисахаридов (коферментов, витаминов, антикоагулянтов, антибиотиков, специфических групповых веществ). Велика роль У. в процессе оплодотворения, в иммунных реакциях, при маркировке и транспорте гликопротеидов и т.д.
В органах и тканях человека содержится около 2% У. (в пересчете на сухую массу ткани). В основном это гликоген печени и мышц. Содержание глюкозы в крови в норме составляет 50—95 мг/100 мл или 2,8—5,3 ммоль/л. Кроме глюкозы, в крови содержатся фруктоза (0,5—5 мг/100 мл), пентозы (1,8—3,3 мг/100 мл), следы альдогексоз (галактозы, маннозы), дисахаридов (лактозы, сахарозы, мальтозы — солодового сахара), различных полисахаридов. В крови взрослых содержание гликогена составляет 7—15 мг/100 мл, у детей — около 20 мг/100 мл. В цереброспинальной жидкости содержится 2/33/4 количества У. крови (в основном глюкозы), т.е. 40—70 мг/100 мл. С мочой взрослого человека за сутки в норме выделяется 16—132 мг глюкозы или 3—15 мг/100 мл; в моче обнаружены следовые количества различных пентоз (ксилозы, арабинозы, рибозы), гексоз (рамнозы, фруктозы), дисахаридов (лактозы, сахарозы) и др. У детей, особенно у новорожденных и недоношенных, при питании молоком возрастает содержание в моче лактозы (до 120 мг/100 мл), глюкозы (до 25 мг/100 мл), галактозы (до 25 мг/100 мл) и фруктозы (до 70 мг/100 мл). У взрослых, практически здоровых людей с мочой за сутки выделяется 65,8—193,4 мг гликозаминопротеогликанов и 2,7—7,5 мг кислых гликозаминогликанов (хондроитинсульфатов А и С). В моче в норме содержится 1—11 мг/100 мл гликопротеидов.
Стойкие изменения содержания У. в тканях и биологических жидкостях, а также изменение активности ферментов, участвующих в их превращениях, являются важнейшими биохимическими диагностическими тестами нарушений углеводного обмена. Таковы, например, повышение концентрации глюкозы в крови и моче при сахарном диабете (см. Диабет сахарный), увеличение содержания в крови галактозы при галактоземии, в моче — фруктозы, сахарозы, пентоз и др. при различных видах мелитурий (Мелитурия) (фруктозурии, сахарозурии, пентозурий и др.). При диффузных болезнях соединительной ткани и гликогенозах (Гликогенозы) концентрация гликогена в крови может подниматься до 100 мг/100 мл и выше, а при остром гепатите (Гепатиты) снижаться ниже нормы. При менингитах в цереброспинальной жидкости снижается концентрация глюкозы; при энцефалитах и сахарном диабете она повышается. При нарушениях обмена гликозаминогликанов — мукополисахаридозах (Мукополисахаридозы) в моче больных повышается концентрация различных кислых мукополисахаридов, в. т. ч. и хондроитинсульфатов.
При нарушениях углеводного обмена содержание отдельных сахаров обычно определяют в наиболее доступном биологическом материале — крови и моче больного. Методы определения У. в зависимости от своего назначения можно разделить на качественные пробы, количественные методы, методы идентификации сахаров, а также развивающиеся в последнее время полуколичественные экспресс-методы определения сахаров с использованием готовых форм реактивов и автоматизированные количественные методы с использованием автоанализаторов. Качественные пробы на сахара предназначены для обнаружения в моче повышенного содержания глюкозы или других моносахаридов. Большинство проб основано на способности моносахаридов при окислении восстанавливать ряд веществ. Так, в пробе Бенедикта (Фелинга, Гайнеса и др.) глюкоза восстанавливает при нагревании в щелочной среде гидрат окиси меди синего цвета и закись меди красного цвета, в пробе Ниландера нитрат висмута — в черный металлический висмут. Все эти пробы легко могут быть проведены в любой лаборатории, однако они не позволяют получить количественной оценки и очень неспецифичны, т.к. дают положительный результат с любым веществом, обладающим восстанавливающей способностью. Количественные методы определения сахаров в биологических жидкостях весьма разнообразны. Их можно разделить на поляриметрические, титриметрические, химические колориметрические и ферментативные колориметрические методы. Растворы сахаров оптически активны и могут вращать плоскость поляризованного луча света, причем угол вращения пропорционален концентрации сахара в растворе. Изменяя в поляриметре угол вращения обесцвеченной прозрачной пробы мочи, можно определить содержание в ней глюкозы. Метод этот малоспецифичен и неточен, т.к. различные сахара имеют разные величины удельного вращения (а в моче могут присутствовать несколько сахаров); результаты измерения искажаются также присутствием в пробе других оптически активных веществ.
Титриметрические методы основаны на определении восстанавливающей способности глюкозы. Например, в методе Хагедорна — Йенсена глюкоза безбелкового фильтрата крови восстанавливает в щелочной среде красную кровяную соль до желтой кровяной соли; избыток красной кровяной соли измеряют йодометрическим титрованием и т. о. определяют концентрацию глюкозы. Этот метод трудоемок и малоспецифичен, т.к. наряду с глюкозой определяются все восстанавливающие вещества. Последующие модификации этого метода (в частности, метод Фудзиты — Иватаке) сводились к попыткам удалить из пробы крови вместе с белками некоторые восстанавливающие вещества (мочевую кислоту, глутатион и др.). Одним из первых были модифицированы в колориметрические различные редуктометрические методы определения сахаров. Так, в методе Крецелиуса — Зейферта под действием глюкозы в щелочной среде пикриновая кислота восстанавливается до коричнево-красной пикраминовой кислоты, а в методе Нельсона — Шомодьи медь из медно-тартронового реактива восстанавливалась до закисного гидрооксида меди, который в реакции с арсеномолибдатом аммония давал синюю окраску. Интенсивность окраски определяли колориметрически, а расчет глюкозы вели по стандартной кривой. Эти методы были неспецифичны и давали большую ошибку при определении. Еще менее точными оказались методы, основанные на осмолении редуцирующих сахаров при кипячении со щелочью (метод Альтгаузена и его модификации).
Большая группа колориметрических методов основана на получении из сахаров при нагревании с минеральными кислотами фурфуролов, которые реагируют затем с различными циклическими соединениями (антроном, фенолом, α-нафтолом и др.) с образованием цветных комплексов. Интенсивность окраски соответствует количеству образовавшегося фурфурола, т.е. концентрации сахара в исследуемой пробе. Точность этих методов в большой степени зависит от качества кислоты и температурного режима. Было показано, что при нагревании в слабокислой среде альдосахара (глюкоза, галактоза и др.) способны непосредственно соединяться с циклическими аминами (анилином, о-толуидином, дифениламином и др.) с образованием цветных продуктов конденсации. Это свойство было использовано для разработки методов определения глюкозы, среди которых наиболее распространен и унифицирован о-толуидиновый метод определения альдосахаров в крови и в моче.
Наиболее специфичными и перспективными методами определения сахаров считаются методы, основанные на использовании чистых ферментов. Так, глюкозу в биологических жидкостях определяют с помощью фермента глюкозооксидазы. Этот фермент окисляет глюкозу до глюконовой кислоты, при этом в реакции образуется перекись водорода; ее расщепляют ферментом пероксидазой, и образовавшийся в реакции атомарный кислород окисляет какой-либо краситель до окрашенной формы. Интенсивность окраски пропорциональна содержанию в пробе глюкозы. Метод унифицирован и широко распространен во многих клинико-диагностических лабораториях Для определения глюкозы были разработаны также методы с использованием фермента гексокиназы, которая при участии аденозинтрифосфата превращает глюкозу в глюкозо-6-фосфат; в реакции образуется также аденозиндифосфат. Далее определяют глюкозо-6-фосфат с помощью глюкозо-6-фосфатдегидрогеназы или содержание аденозиндифосфата с помощью пируваткиназы и лактатдегидрогеназы. Гексокиназные методы точны и специфичны, но используются редко из-за дефицита и высокой стоимости чистых ферментов. Специфическое определение галактозы в крови больных с галактоземией проводилось с помощью галактозооксидазы — фермента по своему действию близкого к глюкозооксидазе.
Проблема идентификации сахаров в биологических жидкостях возникла вследствие необходимости диагностировать различные мелитурии, болезни накопления, а также с целью установления строения олигосахаридов. Первые методы идентификации были качественными пробами на определенные виды сахаров. Они основывались на образовании различных видов озазоновых и гидразоновых кристаллов моносахаридов, на сбраживании сахаров различными микроорганизмами, на различной способности моносахаридов образовывать фурфуролы. Пентозы в моче обнаруживали пробами с флороглюцином, орцином, бензидином и др.; фруктозу — резорциновым, тиобарбитуровым и другими методами; галактозу и лактозу — по образованию белой слизевой кислоты в присутствии азотной кислоты; дезоксисахара (фукозу, дезоксирибозу и др.) — методами Дише по дифениламиновой реакции в кислой среде; сиаловые кислоты после их гидролитического отщепления от гликопротеидов определяли по реакции Гесса с серной и уксусной кислотами или по реакции с тиобарбитуровой кислотой; сахарозу — по кислотному или ферментативному гидролизу и образованию глюкозы и фруктозы. Все ферментативные методы определения сахаров являются также и методами их идентификации. Однако качественно и количественно охарактеризовать весь состав сахаров в исследуемой пробе биологической жидкости стало возможным только при использовании электрофоретического разделения боратных комплексов сахаров или различных видов хроматографии (Хроматография) (на бумаге, в тонком слое силикагеля, колоночной, газожидкостной и др.). При идентификации олигосахаридов и полисахаридов их сначала выделяют в чистом виде, затем определяют их мономерный состав после полного кислотного гидролиза, степень полимеризации и молекулярную массу и далее устанавливают типы гликозидных связей после частичного кислотного или ферментативного гидролиза.
Экспресс-методы определения в биологических жидкостях различных компонентов (в т.ч. сахаров) характеризуются большой чувствительностью, точностью, быстротой и простотой исполнения. Для их выполнения не требуется специального оборудования. Первоначально были разработаны таблеточные редуктометрические экспресс-методы для определения сахаров в моче. Окраску мочи через 1—2 мин после добавления таблеточных реактивов сравнивали с цветной шкалой и по ней определяли концентрацию редуцирующих сахаров в пробе. Позднее были предложены различные варианты тест-бумажек для ферментативного определения глюкозы в моче (например, «Глюкотест») и в крови (например, «Глюкозан») с использованием глюкозооксидазного метода. Эти экспресс-методы отличаются высокой специфичностью. Для проведения анализа достаточно полоску фильтровальной бумаги, пропитанную реактивами и ферментами, смочить мочой или каплей крови и сравнить развившуюся через 1—2 мин окраску с приложенной цветной шкалой. Концентрацию глюкозы в пробе определяют по совпадающему цвету на шкале. Интенсивность окраски полоски (и концентрация глюкозы в пробе) может быть определена точнее с помощью специального отражательного фотоэлектроколо-риметра. Тест-бумажки стали выпускать в различных комбинациях с другими экспресс-методами (например, полоски Multistix фирмы Ames), благодаря чему исследователь получил возможность за 1—2 мин определить до 10 компонентов мочи. Были выпущены также тест-бумажки для определения галактозы в моче с помощью фермента галактозооксидазы. Использование экспресс-методов особенно перспективно для диагностики сахарного диабета и галактоземии, контроля за ходом лечения (больной может самостоятельно определить концентрацию сахара), для использования в экстренных случаях (например при подозрении на гипогликемическую кому) и в местностях, удаленных от клинико-диагностических лабораторий. Разработка новых экспресс-методов в настоящее время ведется многими научными центрами и фирмами.
Значительным достижением в развитии лабораторной техники явились разработка и внедрение в практику работы крупных лабораторных центров автоматических анализаторов. Многие количественные методы определения сахаров (редуктометрические, о-толуидиновый, глюкозооксидазный) были модифицированы для автоанализаторов, в результате чего клиники получили возможность в течение короткого времени с минимальными затратами и высокой точностью проводить большие серии определений концентрации сахаров в биологических жидкостях больных.
Библиогр.: Биохимические методы исследования в клинике, под ред. А.А. Покровского, с. 216, 234, М., 1969; Кочетков Н.К. и др. Химия углеводов, М., 1967; Лабораторные методы исследования в клинике, под ред. В.В. Меньшикова, с. 230, М., 1987; Мецлер Д. Биохимия, пер. с англ., т. 1—2, М., 1980; Степаненко Б.Н. Химия и биохимия углеводов (полисахариды), М., 1978; Тодоров И. Клинические лабораторные исследования в педиатрии, пер. с болг., с. 545, 945, София, 1968.
IIУглево́ды (син.: глициды — устар., глюциды — устар.)
природные органические соединения, представляющие собой альдегидо- и кетоноспирты или продукты их конденсации; присутствуют в свободном виде и в соединениях или комплексах с белками и липидами во всех органах и тканях и являются одним из основных питательных веществ.
Углево́ды неусвоя́емые (син. У. трудноусвояемые) — высокомолекулярные У. в составе продуктов растительного происхождения (например, клетчатка), слабо поддающиеся расщеплению при воздействии пищеварительных соков.
Углево́ды рафини́рованные — легкоусвояемые У., извлеченные из растительного сырья и очищенные от сопутствующих (балластных) веществ для употребления в пищу.
Углево́ды трудноусвоя́емые — см. Углеводы неусвояемые.
Углево́ды усвоя́емые — У. в составе продуктов питания, эффективно перевариваемые и используемые организмом, например крахмал, гликоген, сахароза.

Смотреть больше слов в «Медицинской энциклопедии»

УГЛЕКИСЛЫЙ ГАЗ →← УГЛЕВОДОРОДЫ

Смотреть что такое УГЛЕВОДЫ в других словарях:

УГЛЕВОДЫ

см. Гидраты углерода, Глюкозы, Сахарозы, Сахар, Пентозаны, Декстрин, Крахмал, Клетчатка и пр.

УГЛЕВОДЫ

        обширная группа органических соединений, входящих в состав всех живых организмов. Первые известные представители этого класса веществ по состав... смотреть

УГЛЕВОДЫ

УГЛЕВОДЫ, -ов, ед. углевод, -а, м. Органические соединения, содержащиеуглерод, кислород и водород. II прил. углеводный, -ая, -ое и углеводистый,-ая, -ое.... смотреть

УГЛЕВОДЫ

углеводы мн. Группа органических соединений, состоящих из углерода, кислорода и водорода, необходимых для жизнедеятельности животных и растительных организмов.<br><br><br>... смотреть

УГЛЕВОДЫ

УГЛЕВОДЫ, обширная группа органических соединений, входящих в состав всех живых организмов. Первые известные представители этого класса веществ по со... смотреть

УГЛЕВОДЫ

Углеводы — см. Гидраты углерода, Глюкозы, Сахарозы, Сахар, Пентозаны, Декстрин, Крахмал, Клетчатка и пр.

УГЛЕВОДЫ

(сахара), обширная группа полигидроксикарбо-нильных соед., входящих в состав всех живых организмов; к У. относят также мн. производные, получаемые п... смотреть

УГЛЕВОДЫ

Русский ученый К. А. Тимирязев писал: «Давно замечено, что мы не обращаем внимания на самые замечательные факты только потому, что они слишком обыкновенны. Многим ли, действительно, приходит в голову, что ломоть хлеба, хорошо испеченного пшеничного хлеба... составляет одно из величайших изобретений человеческого ума». Необходимыми компонентами для организма являются углеводы, которые попадают с растительной пищей, в том числе и с хлебом. Углеводы служат основным источником энергии. Свыше 56% энергии организм получает за счет углеводов, остальную часть — за счет белков и жиров. Для деятельности головного мозга единственным поставщиком энергии является глюкоза. Углеводы обнаруживаются во всех без исключения органах и тканях. Они входят в состав оболочек клеток и субклеточных образований, принимают участие в образовании многих важнейших веществ. Углеводы обладают способностью накапливаться в организме в виде гликогена в печени и мышцах. Вязкие секреты, выделяемые различными железами, также богаты углеводами. Они предохраняют стенки органов (пищевод, кишки, желудок, бронхи и т.д.) от проникновения патогенных микробов, механических и термических повреждений. По химической природе углеводы являются органическими веществами, в состав которых входят углерод, кислород и водород. В зависимости от сложности строения, растворимости, быстроты усвоения и использования для гликогенообразования углеводы пищевых продуктов подразделяются на простые углеводы: моносахариды (глюкоза, фруктоза, галактоза), дисахариды (сахароза, лактоза, мальтоза) и сложные углеводы, или полисахариды (крахмал, гликоген, пектиновые вещества, клетчатка). Моносахариды и дисахариды имеют несложную химическую структуру, обусловливающую легкую их расщепляемость. Все они легко растворяются в воде и быстро усваиваются. Коэффициент всасывания (количество сахара в граммах, всасываемого в течение 1 ч. на 100 г массы тела) для глюкозы — 0.178, фруктозы — 0.077. Таким образом, глюкоза всасывается примерно в 2 раза быстрее, чем фруктоза. Простые углеводы обладают выраженным сладким вкусом и относятся к сахарам. Сладость сахаров различная. Если принять сладость дисахарида сахарозы (свекловичный или тростниковый сахар) за 100, то сладость сахаров будет выражаться следующими величинами (по Бистер — Вуду и Валину): сахарозы — 100, фруктозы — 173, инвертного сахара — 130, глюкозы — 74, ксилозы — 40, мальтозы — 32.5, рамнозы — 32.5, галактозы — 32.1, рафинозы — 22.6, лактозы-16. Таким образом, наибольшей сладостью отличается фруктоза, наименьшей — лактоза. Наиболее распространенный моносахарид — глюкоза — содержится во многих плодах и ягодах, а также образуется в организме в результате расщепления дисахаридов и крахмала пищи. Глюкоза наиболее быстро и легко используется в организме для образования гликогена, для питания тканей мозга, работающих мышц (в том числе сердечной мышцы), для поддержания необходимого уровня сахара в крови и создания запасов гликогена печени. Она служит эффективным средством поддержания питания послеоперационных, ослабленных и других тяжелобольных. Во всех случаях при большом физическом напряжении глюкоза может использоваться как источник энергии. Фруктоза обладает теми же свойствами, что и глюкоза, и может рассматриваться как ценный, легкоусвояемый сахар. Однако, она медленнее усваивается в кишечнике и, поступая в кровь, быстро покидает кровяное русло. Фруктоза в значительном количестве (до 70-80%) задерживается в печени и не вызывает перенасыщения крови сахаром. В печени фруктоза более легко превращается в гликоген по сравнению с глюкозой. Другим свойством фруктозы является сравнительно невысокая стойкость, в результате чего фруктоза начинает частично изменяться, уже при продолжительном кипячении. Фруктоза усваивается лучше сахарозы и отличается большей, сладостью. Высокая сладость фруктозы позволяет использовать меньшие ее количества для достижения необходимого уровня сладости продуктов и таким образом снизить общее потребление сахаров, что имеет значение при построении пищевых рационов ограниченной калорийности. Избыток сахарозы оказывает влияние на жировой обмен, усиливая жирообразование. Установлено, что при избыточном поступлении сахара усиливается превращение в жир всех пищевых веществ (крахмала, жира, частично и белка). Таким образом, количество поступающего сахара, может служить в известной степени фактором, регулирующим жировой обмен. Обильное потребление сахара приводит к нарушению обмена холестерина и повышению его уровня в сыворотке крови. Избыток сахара отрицательно сказывается на функции кишечной микрофлоры. При этом повышается удельный вес гнилостных процессов в кишечнике, развивается метеоризм. Установлено, что в наименьшей степени эти недостатки проявляются при потреблении фруктозы. Основными источниками фруктозы являются фрукты и ягоды. Глюкоза и фруктоза широко представлены в меде: содержание глюкозы достигает 36.2%, фруктозы — 37.1%. В арбузах весь сахар представлен фруктозой, количество которой составляет 8%. Третий моносахарид — галактоза — в свободном виде в пищевых продуктах не встречается. Галактоза является продуктом расщепления основного углевода молока — лактозы. Из дисахаридов в питании человека основное значение имеет сахароза, которая при гидролизе распадается на глюкозу и фруктозу. Источниками сахарозы в питании человека являются главным образом тростниковый и свекловичный сахар. Содержание сахарозы в сахарной свекле составляет от 14 до 25%. В сахарном тростнике количество сахарозы достигает 10-15%. Содержание сахарозы в сахарном песке составляет 99.75%, в сахаре-рафинаде — 99.9%. Натуральными источниками сахарозы являются бахчевые, некоторые овощи и фрукты. Молочный сахар — лактоза — содержится только в молоке. Гидролиз лактозы в кишечнике протекает медленно, в связи с чем ограничиваются процессы брожения в нем и нормализуется, жизнедеятельность полезной кишечной микрофлоры. Поступление лактозы способствует развитию молочнокислых бактерий, подавляющих в кишечнике развитие гнилостных микроорганизмов. Содержание лактозы в молоке составляет 4-6%. Сложные углеводы, или полисахариды, характеризуются усложненным строением молекулы и плохой растворимостью в воде. К сложным углеводам относятся крахмал, пектиновые вещества и клетчатка.... смотреть

УГЛЕВОДЫ

УГЛЕВОДЫ сахара, алифатич. полиоксикарбонильные соединения и их многочисл. (в т. ч. полимерные) производные, компоненты всех без исключения живых орга... смотреть

УГЛЕВОДЫ

углево́ды, глициды, группа природных органических соединений, в большинстве случаев соответствующих формуле Cm(H2O)n. У. делят на простые и сложные; по... смотреть

УГЛЕВОДЫ

, полиоксикарбонильные соединения с общей формулой (СН2О)n, а также многочисленные производные этих соединений. Присутствуют во всех живых организмах в... смотреть

УГЛЕВОДЫ

сахара) — органические соединения, состоящие из углерода, водорода и кислорода, причем водород и кислород входят в их состав в соотношении 2:1, как в воде. По способности к гидролизу на мономеры углеводы делятся на две группы: простые (моносахариды) и сложные (олигосахариды и полисахариды). Сложные углеводы, в отличие от простых способны гидролизовываться с образованием простых углеводов, мономеров. Простые углеводы легко растворяются в воде и синтезируются в зеленых растениях. Углеводы — первичные продукты фотосинтеза и основные исходные продукты биосинтеза других веществ в растениях. Составляют существенную часть пищевого рациона человека и многих животных. Подвергаясь окислительным превращениям обеспечивают все живые клетки энергией (глюкоза и ее запасные формы — крахмал, гликоген). Входят в состав клеточных оболочек и других структур, участвуют в защитных реакциях организма (иммунитет). Применяются в пищевой (глюкоза, крахмал, пектиновые вещества), текстильной и бумажной (целлюлоза), микробиологической (получение кислот и других веществ сбраживанием углеводов) и других отраслях промышленности. Используются в медицине (гепарин, сердечные гликозиды, некоторые антибиотики). Главными источниками углеводов из пищи являются хлеб, картофель, макароны, крупы. Чистым углеводом является сахар. Мед в зависимости от своего происхождения содержит 70—80 % сахара. К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины. ... смотреть

УГЛЕВОДЫ

УГЛЕВОДЫ, обширная группа природных органических соединений, химическая структура которых часто отвечает общей формуле Cm(H2O)n (т. е. углерод вода, отсюда название). Различают моно-, олиго- и полисахариды, а также сложные углеводы - гликопротеиды, гликолипиды, гликозиды и др. Углеводы - первичные продукты фотосинтеза и основные исходные продукты биосинтеза других веществ в растениях. Составляют существенную часть пищевого рациона человека и многих животных. Подвергаясь окислительным превращениям, обеспечивают все живые клетки энергией (глюкоза и ее запасные формы - крахмал, гликоген). Входят в состав клеточных оболочек и других структур, участвуют в защитных реакциях организма (иммунитет). Применяются в пищевой (глюкоза, крахмал, пектиновые вещества), текстильной и бумажной (целлюлоза), микробиологической (получение спиртов, кислот и других веществ сбраживанием углеводов) и других отраслях промышленности. Используются в медицине (гепарин, сердечные гликозиды, некоторые антибиотики).<br><br><br>... смотреть

УГЛЕВОДЫ

УГЛЕВОДЫ - обширная группа природных органических соединений, химическая структура которых часто отвечает общей формуле Cm(H2O)n (т. е. углерод вода, отсюда название). Различают моно-, олиго- и полисахариды, а также сложные углеводы - гликопротеиды, гликолипиды, гликозиды и др. Углеводы - первичные продукты фотосинтеза и основные исходные продукты биосинтеза других веществ в растениях. Составляют существенную часть пищевого рациона человека и многих животных. Подвергаясь окислительным превращениям, обеспечивают все живые клетки энергией (глюкоза и ее запасные формы - крахмал, гликоген). Входят в состав клеточных оболочек и других структур, участвуют в защитных реакциях организма (иммунитет). Применяются в пищевой (глюкоза, крахмал, пектиновые вещества), текстильной и бумажной (целлюлоза), микробиологической (получение спиртов, кислот и других веществ сбраживанием углеводов) и других отраслях промышленности. Используются в медицине (гепарин, сердечные гликозиды, некоторые антибиотики).<br>... смотреть

УГЛЕВОДЫ

, группа природных органических соединений, химическая структура которых отвечает формуле (C·H2O)n (т.е. углерод+вода; отсюда название). Различают моно... смотреть

УГЛЕВОДЫ

УГЛЕВОДЫ, обширная группа природных органических соединений, химическая структура которых часто отвечает общей формуле Cm(H2O)n (т. е. углерод вода, отсюда название). Различают моно-, олиго- и полисахариды, а также сложные углеводы - гликопротеиды, гликолипиды, гликозиды и др. Углеводы - первичные продукты фотосинтеза и основные исходные продукты биосинтеза других веществ в растениях. Составляют существенную часть пищевого рациона человека и многих животных. Подвергаясь окислительным превращениям, обеспечивают все живые клетки энергией (глюкоза и ее запасные формы - крахмал, гликоген). Входят в состав клеточных оболочек и других структур, участвуют в защитных реакциях организма (иммунитет). Применяются в пищевой (глюкоза, крахмал, пектиновые вещества), текстильной и бумажной (целлюлоза), микробиологической (получение спиртов, кислот и других веществ сбраживанием углеводов) и других отраслях промышленности. Используются в медицине (гепарин, сердечные гликозиды, некоторые антибиотики).... смотреть

УГЛЕВОДЫ

УГЛЕВОДЫ , обширная группа природных органических соединений, химическая структура которых часто отвечает общей формуле Cm(H2O)n (т. е. углерод вода, отсюда название). Различают моно-, олиго- и полисахариды, а также сложные углеводы - гликопротеиды, гликолипиды, гликозиды и др. Углеводы - первичные продукты фотосинтеза и основные исходные продукты биосинтеза других веществ в растениях. Составляют существенную часть пищевого рациона человека и многих животных. Подвергаясь окислительным превращениям, обеспечивают все живые клетки энергией (глюкоза и ее запасные формы - крахмал, гликоген). Входят в состав клеточных оболочек и других структур, участвуют в защитных реакциях организма (иммунитет). Применяются в пищевой (глюкоза, крахмал, пектиновые вещества), текстильной и бумажной (целлюлоза), микробиологической (получение спиртов, кислот и других веществ сбраживанием углеводов) и других отраслях промышленности. Используются в медицине (гепарин, сердечные гликозиды, некоторые антибиотики).... смотреть

УГЛЕВОДЫ

УГЛЕВОДЫ, группа природных органических соединений, химическая структура которых отвечает формуле (CъH2O)n (т.е. углерод+вода; отсюда название). Различают моно-, олиго- и полисахариды, а также сложные углеводы - гликопротеины, гликолипиды, гликозиды и другие углеводы - первичные продукты фотосинтеза и основные исходные соединения для биосинтеза других веществ в растениях. Составляют существенную часть пищевого рациона человека и многих животных (основные источники - фрукты и овощи). В результате распада углеводов в организмах образуется энергия, необходимая для их жизнедеятельности. Входят в состав клеточных оболочек и других структур, участвуют в защитных реакциях организма (иммунитет). Применяются в пищевой (глюкоза, крахмал, пектиновые вещества), текстильной и бумажной (целлюлоза), микробиологической (получение спиртов, кислот и других веществ сбраживанием углеводов) и других отраслях промышленности. Используются в медицине (гепарин, сердечные гликозиды, глюкоза и др.). <br>... смотреть

УГЛЕВОДЫ

- обширная группа природных органических соединений, химическаяструктура которых часто отвечает общей формуле Cm(H2O)n (т. е. углеродвода, отсюда название). Различают моно-, олиго- и полисахариды, а такжесложные углеводы - гликопротеиды, гликолипиды, гликозиды и др. Углеводы -первичные продукты фотосинтеза и основные исходные продукты биосинтезадругих веществ в растениях. Составляют существенную часть пищевого рационачеловека и многих животных. Подвергаясь окислительным превращениям,обеспечивают все живые клетки энергией (глюкоза и ее запасные формы -крахмал, гликоген). Входят в состав клеточных оболочек и других структур,участвуют в защитных реакциях организма (иммунитет). Применяются в пищевой(глюкоза, крахмал, пектиновые вещества), текстильной и бумажной(целлюлоза), микробиологической (получение спиртов, кислот и другихвеществ сбраживанием углеводов) и других отраслях промышленности.Используются в медицине (гепарин, сердечные гликозиды, некоторыеантибиотики).... смотреть

УГЛЕВОДЫ

углеводы (син.: глициды — устар., глюциды — устар.) — природные органические соединения, представляющие собой альдегидо- и кетоноспирты или продукты их конденсации; присутствуют в свободном виде и в соединениях или комплексах с белками и липидами во всех органах и тканях и являются одним из основных питательных веществ.<br>      углеводы неусвояемые (син. У. трудноусвояемые) — высокомолекулярные У. в составе продуктов растительного происхождения (например, клетчатка), слабо поддающиеся расщеплению при воздействии пищеварительных соков.<br>      углеводы рафинированные — легкоусвояемые У., извлеченные из растительного сырья и очищенные от сопутствующих (балластных) веществ для употребления в пищу.<br>      углеводы трудноусвояемые — см. <i>Углеводы неусвояемые.</i><br>      углеводы усвояемые — У. в составе продуктов питания, эффективно перевариваемые и используемые организмом, напр. крахмал, гликоген, сахароза. <br><br><br>... смотреть

УГЛЕВОДЫ

(сахара), обширная группа природных органич. соединений, хим. структура к-рых часто отвечает общей формуле Cm(H2O)n (т.е. углерод + вода, отсюда назв.)... смотреть

УГЛЕВОДЫ

УГЛЕВОДЫ, органические соединения, состоящие из углерода, водорода и кислорода, которые входит в состав многих пищевых продуктов. Количества атомов вод... смотреть

УГЛЕВОДЫ

1) Орфографическая запись слова: углеводы2) Ударение в слове: углев`оды3) Деление слова на слоги (перенос слова): углеводы4) Фонетическая транскрипция ... смотреть

УГЛЕВОДЫ

органические соединения, состоящие из углерода (С), водорода (Н) и кислорода (О), причем водород и кислород находятся в таких количественных отношениях... смотреть

УГЛЕВОДЫ

— обширная гр. орг. соединений, играющих наряду с белками и липидами важнейшую роль в живых организмах. Особенно богаты У. растения. Состав большинств... смотреть

УГЛЕВОДЫ

сахара, - природные органич. соединения, играющие наряду с белками и жирами важную роль в жизнедеятельности организмов; назв. связано с тем, что состав... смотреть

УГЛЕВОДЫ

м. мн. ч. carboidrati m pl, idrati m pl di carbonio; glucidi m pl

УГЛЕВОДЫ

корень - УГЛЕВОД; окончание - Ы; Основа слова: УГЛЕВОДВычисленный способ образования слова: Бессуфиксальный или другой∩ - УГЛЕВОД; ⏰ - Ы; Слово Углевод... смотреть

УГЛЕВОДЫ

— кл. соединений, которые содержат одновременно гидроксильные и карбонильные группы — альдегидоспирты и кетоспирты. Играют очень важную роль в жизни растений. Являются основными промежуточными продуктами ряда биохимических циклов превращения веществ и входят в состав многих соединений, обнаруживаемых в растительных клетках. <br>... смотреть

УГЛЕВОДЫ

-ов, мн. (ед. углево́д, -а, м.).Многочисленная и широко распространенная группа органических соединений, состоящих из углерода, кислорода и водорода, ... смотреть

УГЛЕВОДЫ

(син.: глициды устар., глюциды - устар.) - природные органические соединения, представляющие собой альдегидо- и кетоноспирты или продукты их конденсации; присутствуют в свободном виде и в соединениях или комплексах с белками и липидами во всех органах и тканях и являются одним из основных питательных веществ.... смотреть

УГЛЕВОДЫ

Ударение в слове: углев`одыУдарение падает на букву: оБезударные гласные в слове: углев`оды

УГЛЕВОДЫ

углеводы, углев′оды, -ов, ед. ч. углевод, -а, м. Органические соединения, содержащие углерод, кислород и водород.прил. углеводный, -ая, -ое и углеводис... смотреть

УГЛЕВОДЫ

углеводы. сахариды. моносахариды.дисахариды: сахароза. лактоза. мальтоза. полисахариды.

УГЛЕВОДЫ

УГЛЕВОДЫ, -ов, ед. углевод, -а, м. Органические соединения, содержащие углерод, кислород и водород. || прилагательное углеводный, -ая, -ое и углеводистый, -ая, -ое.... смотреть

УГЛЕВОДЫ

мн.; (&LT;ед.&GT; углевод &LT;м&GT;)碳水化合物 tànshuǐ huàhéwù, 餹 táng

УГЛЕВОДЫ

углев'оды, -ов, ед. ч. -в'од, -а

УГЛЕВОДЫ

углевод (барлық тірі организмдер құрамында болатын органикалық қосылыстардың көптеген тобы)

УГЛЕВОДЫ

m, pl Kohlenhydrate n, pl простые углеводырафинированные углеводыусвояемые углеводы

УГЛЕВОДЫ

углево́ды, -ов

УГЛЕВОДЫ

м. мн. ч. carbohydrates

УГЛЕВОДЫ

углеводы углев`оды, -ов, ед. -в`од, -а

УГЛЕВОДЫ

(сахариды)уөмірсулар (сахаридтер)

УГЛЕВОДЫ

1) Kohlenhydrate 2) (Kohlenhydrate) KH

УГЛЕВОДЫ

szénhidrát

УГЛЕВОДЫ

углеводы карбогидратҳо

УГЛЕВОДЫ

węglowodany;

УГЛЕВОДЫ

carboidrati

УГЛЕВОДЫ

көмірсулар

УГЛЕВОДЫ

ogļhidrāti

T: 228